CHAPTER 1: BASIC CONCEPTS

1.1 Introduction

- An electrical circuit is an interconnection of several elements. It is a mathematical model that approximates the behavior of an actual electrical system.
- Circuit theory is the study of analyzing an electrical circuit.

1.2 International System of Units (SI)

- SI is an international measurement language.
- There are six principal units.

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd

- The SI units also uses prefixes based on the power of 10 to relate larger and smaller units to the basic unit.

Multiplier	Prefix	Symbol
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	mili	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

1.3 Charge and Current

- Most basic quantity in an electric circuit - electric charge

Charge, e, is an electrical property of the atomic particles of which matter consists, measured in coulomb (C)

- Elementary physics - all matter is made of atoms that consists of elcetrons, protons and neutrons.
- The charge, e of electron is negative and equal in magnitude to $1.602 \times 10^{-19} \mathrm{C}$.
- A proton carries a positive charge of the same magnitude as the electron.
- Notes on electric charge:
(i) Coulomb is a large unit for charges. $1 \mathrm{C}=$ $1 /\left(1.602 \times 10^{-19}\right)=6.24 \times 10^{18}$ electrons.
(ii) Charges are intergral multiplies of the elctron charge.
(iii) The law of conservation of charge - charge can neither be created nor destroyed, only transferred.
- Electric charge is mobile.
- The motion of charges creates electric current, I.

Battery
Rajah 1.1

- The current flow in a conductor:

Electric current, I, is the time rate of change of charge, measured in amperes (A).

- The relationship between current i, charge q and time t is

$$
\begin{equation*}
i=\frac{d q}{d t} \tag{1.1}
\end{equation*}
$$

where current is measured in amperes (A) and 1 ampere $=1$ coulomb/second

- From Equation 1.1, the charge transferred between time t_{0} to t is obtained using

$$
\begin{equation*}
q=\int_{t_{0}}^{t} i d t \tag{1.2}
\end{equation*}
$$

- Two types of current:
(i) direct current (dc)

A direct current is a current that remains constant with time

Figure 1.2
(ii) alternating current (ac)

A alternating current is a current that varies sinusoidally with time

Figure 1.3

- Examples:
(i) The total charge entering a terminal is given by $q=\left(10-10 e^{-2 t}\right) m C$. Calculate the current at $\mathrm{t}=0.5 \mathrm{~s}$.

$$
\begin{aligned}
i & =\frac{d q}{d t}=\frac{d}{d t}(5 t \sin 4 \pi t) m C / s \\
& =(5 \sin 4 \pi t+20 \pi t \cos 4 \pi t) m A
\end{aligned}
$$

At $t=0.5$,

$$
\begin{aligned}
i & =5 \sin 2 \pi+10 \pi \cos 2 \pi=0+10 \pi \\
& =31.42 m A
\end{aligned}
$$

(ii) The current flowing through an element is

$$
i=\left\{\begin{array}{cc}
2 A & 0<t<1 \\
2 t^{2} A & t>1
\end{array}\right.
$$

Calculate the charge entering the element from $t=0$ to $t=2 \mathrm{~s}$.

$$
\begin{aligned}
q & =\int_{0}^{2} i d t=\int_{0}^{1} 2 d t+\int_{1}^{2} 2 t^{2} d t \\
& =\left.2 t\right|_{0} ^{1}+\left.\frac{2 t^{3}}{3}\right|_{1} ^{2}=(2-0)+\left(\frac{16}{3}-\frac{2}{3}\right)=\frac{20}{3} C
\end{aligned}
$$

1.4 Voltage

- Voltage is an external electromotive force (emf) (typically represented by the battery) which performs work to move the electron in a conductor.
- Also known as potential difference between two points.

Voltage, $v_{a b}$ between two points a and b in a electric circuit is the energy (or work) needed to move a unit charge from a to b.

Figure 1.4

- Mathematically:

$$
\begin{equation*}
v_{a b}=\frac{d w}{d q} \tag{1.3}
\end{equation*}
$$

where w is energy in joules (J) and q is charge in coulombs (C).

- Voltage is measured in volts (V), where

1 volt $=1$ joule/coulomb $=1$ newton meter/coulomb

- Examples:

Figure 1.5
For case (a), $v_{a b}=9 \mathrm{~V}$ and for case (b) $v_{b a}=-9 \mathrm{~V}$

1.5 Power and Energy

- Definition of power

Power is the time rate of expanding or absorbing energy, measured in watts (W)

- Mathematically can be defined as:

$$
\begin{align*}
& p=\frac{d w}{d t} \tag{1.4}\\
& p=\frac{d w}{d q} \cdot \frac{d q}{d t}=v i \tag{1.5}
\end{align*}
$$

where p is power in watts (W), w is energy in joules (J) and t is time in seconds (s).

- +power - power is delivered to/absorbed by element.
- -power - power is being supplied by element.

(a)

(b)
(a) absorbing power
(b) supplying power

Figure 1.6

- +Power absorbed = -Power supplied
- The law of conversion of energy - the algebraic sum of power in a circuit at any instant of time must be zero:

$$
\begin{equation*}
\sum p=0 \tag{1.6}
\end{equation*}
$$

- From Equation (1.5), the energy absorbed or supplied by an element from time t_{0} to t is

$$
\begin{equation*}
w=\int_{t_{0}}^{t} p d t=\int_{t_{0}}^{t} v i d t \tag{1.7}
\end{equation*}
$$

Energy is the capacity to do work, measured in joules (J)

- Examples:
(i) Find the power delivered to an element at $t=$ 5 s if the current entering its positive terminal is:

$$
i=5 \cos 60 \pi t \mathrm{~A}
$$

and the voltage is:

$$
\begin{gathered}
v=3 \frac{d i}{d t} \\
v=3 \frac{d i}{d t}=3(-60 \pi) 5 \sin 60 \pi t
\end{gathered}
$$

$$
\begin{aligned}
& v=-900 \pi \sin 60 \pi t \mathrm{~V} \\
& \therefore p=i v=-4500 \pi \sin 60 \pi t \cos 60 \pi t \mathrm{~W}
\end{aligned}
$$

(ii) A stove element draws 15 A when connected to a 120 V line. How long does it take to consume 30 kJ ?

$$
\begin{aligned}
& w=p t \\
& t=\frac{w}{p}=\frac{w}{i v}=\frac{30 \times 10^{3}}{(15)(120)}=16.67 \mathrm{~s}
\end{aligned}
$$

1.6 Circuit Elements

- Two types of elements:
(i) Active elements
- Capable of generating energy.
- i.e. generators, batteries, op-amp
(ii) Passive elements
- Not capable of generating energy.
- i.e. resistors, capacitors, inductors
- Two types of sources (current or voltage): Type 1:

An ideal independent source is an active element that provides a specified voltage or current that is completely independent of other circuit elements.

The symbol for independent sources:

Figure 1.7

Type 2:
An ideal dependent (or controlled) source is an active element in which the source quantity is controlled by another voltage or current.

Example of dependent source: transistor, op-amp The symbol for dependent source:

Figure 1.8

